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Abstract: The aim of this paper is to study the dynamics of a nonlinear damped Duffing oscillator under the 

influence of weak and strong harmonically time-varying external excitation. The mathematical Duffing oscillator is 

represented by a nonhomogeneous second-order ordinary differential equation with a seventh degree of 

nonlinearity. The approximate analytical solution of the governing equation is obtained in terms of amplitude and 

frequency responses via the application of a two timescale perturbation method. The two timescale perturbation 

method is used to find (un)steady state solution of the Duffing oscillator for weakly and strongly external harmonic 

excitation. It is found that the amplitude response decays as time increases due to the presence of damping in the 

system. In addition, the forcing and septic nonlinearity parameters are found to be dominated by the nonlinearity 

and amplitude of the system. 

Keywords: damped duffing oscillator, external excitation, two timescale perturbation method, resonance. 

受迫阻尼达芬振荡器的脓毒非线性共振 

摘要：本文的目的是研究弱谐波时变外部激励和强谐波时变外部激励影响下非线性阻尼

杜芬振荡器的动力学。数学杜芬振子由具有七阶非线性的非齐次二阶常微分方程表示。通过

应用两时间尺度扰动方法，根据振幅和频率响应获得了控制方程的近似解析解。两时间尺度

摄动方法用于寻找弱和强外部谐波激励的杜芬振荡器的(非)稳态解。研究发现，由于系统中

存在阻尼，振幅响应随着时间的增加而衰减。此外，发现强迫和败坏非线性参数受系统的非

线性和振幅支配。 

关键词：信息管理模型，短期规划，年度运营计划，伊达尔戈理工大学。 
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Introduction 

The nonlinear Duffing oscillator has a wide range of 

applications in science, engineering, biology, and 

communication theory, including soliton theory, for 

example, magnetoelastic mechanical structures, huge 

amplitude oscillation of centrifugal governor structures, 

nonlinear vibration of beams and plates, and fluid flow 

persuaded vibration. Few issues occurring in different 

fields of applied sciences and engineering are linear 

whereas many oscillation problems are nonlinear. 

Nonlinear oscillations are important in physical 

sciences, mechanical structures, and other disciplines, 

which are mathematically expressed in the form of 

differential equations; most of them are nonlinear. The 

methods of solving linear differential equations are 

comparatively easy and well established. On the 

contrary, the solution techniques of nonlinear 

differential equations are less available, and in general, 

linear approximations are frequently used. It is very 

difficult to solve nonlinear differential equations, and 

in general, it is often more difficult to obtain an 

analytic approximation than a numerical one. To 

overcome this shortcoming, in recent years, many 

analytical and numerical methods have been used for 

solving these nonlinear differential equations. For 

instance, Lindstedt-Poincare perturbation method [1-4], 

multiple scale perturbation method [5-15], Homotopy 

perturbation method [16-17], energy balance method 

[18-19], modified variational approach [20-22], 

Adomian decomposition method [23-27], and Laplace 

transform method [28-29]. The amplitude–frequency 

relationship is important for the accurate prediction of 

nonlinear oscillatory systems in many areas of physics 

and engineering, especially in nonlinear structural 

dynamics. Therefore, the analysis of nonlinear systems 

has been widely considered. In recent years, many 

powerful methods have been used to find approximate 

solutions and the amplitude-frequency relationship to 

nonlinear differential equations. The two timescale 

perturbation method is one of the most suitable 

methods to investigate the nonlinear dynamics of 

oscillators. In the literature, the dynamic behavior of 

the Duffing oscillator up to degree five is studied. 

However, it is still very interesting to examine the 

behavior of the forced Duffing oscillator up to degree 

seven of nonlinear terms. This study finds (un)steady-

state responses for (non)resonance phenomena for a 

forced Duffing oscillator with septic nonlinearity. The 

following governing equations of motion [30] for the 

Duffing oscillator under septic nonlinearity with initial 

conditions are given as follows:  

   

   
  

  

  
                            

          
  

  
                                                     

where                       represents hard 

spring,                    represents 

softening spring,      reresents external harmonic 

excitation. The damping coefficients are represented by 

  and       represent the initial displacement and 

initial velocity, respectively. In Eq. (1),   is taken as 

   as a natural frequency of the Duffing oscillator and 

the external excitation as a harmonically excited 

system, that is                 , where   is the 

amplitude of external excitation and   as the excitation 

frequency. In this paper, Eq. (1) has been studied for 

two different cases of external excitations, i.e.      
     and          . In the next section, the initial-

value problem for two different cases of external 

excitations will be studied via a two timescale 

perturbation method.  

 

1. Weakly Excited System           
Let us consider that the external excitation      , 

damping   and nonlinear coefficients            are 

considered to be of     . Based upon these 

assumptions, Equations (1) and (2) become as follows: 
   

   
        

  

  
             

                                                                              

             
  

  
                                                  

 

1.1. Application of a Two Timescale Perturbation 

Method 

This subsection will study the governing equations 

of motion given in Equations (3) and (4) by the 

application of a two timescale perturbation method. Let 

us consider that the solution of Eq. (3) is of the form 

given as: 

                                                                        
where the time    is a fast scale and    is a slow scale, 

that is:                The transformation of 

derivatives with these fast    and slow timescales 

   then becomes: 
 

  
 

 

   
  

 

   
   

  

   
 

  

   
    

  

      
                                  

By setting Equations (5) and (6) into Eq. (3) it 

yields:  

 
   

   
    

   

      
       

     
  

   
  

  

   
       

                                  

The expansion of Eq. (5) is in the following form: 

               
                      
                                                   

By putting Eq. (8) into Eq. (7) and equating the 
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coefficients of various powers of                 and 

             is obtained as follows: 

     
    

   
                                                        

     
    

   
      

   
    
      

  
   
   

    
     

 

    
                                     

The solution of      problem given in Eq. (9) can 

be obtained directly by integration that is given as 

follows:  

          
            

                                     
where the function       is defined as follows:  

      
 

 
      

                                                       

The functions       and       can be obtained by 

eliminating the secular terms from      the problem. 

By putting Eq. (11) into Eq. (10), it yields:  

    

   
          

  

      
                 

   
 

   
                 

                   
 

                   
 

                   
 

                                               
After lengthy calculations, it turns out that the 

resonances on the right-hand side of Eq. (13) occur if 

the excitation frequency   is equal to the natural 

frequency   of the system, that is,    . This 

resonance is known as primary resonance.  

 

1.2. Amplitude-Frequency Response of the System 

at Primary Resonance:     

To show the nearness of   to    one may use 

detuning parameters: 

                                                                     
where the parameter   is taken to be       By putting 

Eq. (14) into Eq. (13), the secular (unbounded) terms 

on the right hand side of Eq. (13) is obtained, which 

will violate the uniformity condition for the asymptotic 

expansion (8). To obtain uniform asymptotic 

approximations, the secular terms on the right-hand 

side of Eq. (13) will be eliminated after plugging Eq. 

(14). Thus, the elimination of secular term yield: 

   
  

   
                              

 
 

 
   

                                        

In order to solve Eq. (15) for the function      , 

  
 

 
     will be put into Eq. (15) and  separate the 

real and imaginary parts to get: 

    
 

 
   

  
  

                                           

    
 

  
    

  

   
    

  

    
   

 
  
  

                                  

Equations (16) and (17) are non-autonomous 

systems, that is, the system that depends upon the 

independent variable time    in this case. To write 

them independent of time variables, it follows   
       so         or        . With these 

substitutions, Equations. (16) and (17) becomes: 

    
 

 
   

  
  

                                                      

             
 

  
    

  

   
    

  

    
   

 
  
  

                                                   

Equations (18) and (19) can be solved for the 

amplitude-response   and phase   or alternatively for 

   It is not easy to solve the system of ordinary 

differential equations given in (18)-(19) analytically, so 

they will be solved numerically. The numerical Runge-

Kutta method is used to solve Equations (18) and (19), 

and the solution is shown in Fig. 1. 

 
Fig. 1 Steady-state response for                     

                  

 

It can clearly be seen from Fig. 1 that the amplitude 

response   reduces to zero as the time   increases, so a 

steady-state solution is possible for a weakly excited 

system at the primary resonance.  

 

1.3. Steady-State Solution in Terms of Frequency 

Response Curve 

For steady state solution, the time-dependent term is 

zero into Equations (18) and (19), that is      
        , it follows: 

     
  

 
 
  
  

                                                   

        
 

  
    

 

   
    

  

    
   

  
 

  
                                  

After squaring and adding Equations (20) and (21) 
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and putting   
 

 
       the following expression 

for the frequency response curve is obtained: 

 

 
   

 

 
 
 

  
    

 

   
    

  

    
   

 
 

 
  

  

    
                       

where    
 

  
. 

Fig. 2 depicts that there is a reasonable effect of 

septic nonlinearity on the amplitude and frequency. It 

is shown that the amplitude   bends to the right for 

positive values of the septic nonlinear parameter    

(Fig. 2a), while for negative values of the parameter, 

the amplitude   bends to the left (Fig. 2b). However, 

the effect of septic nonlinearity   is very rare when the 

values of damping parameters reduce  . 

 

 
Fig. 2 Variation of amplitude with frequency (a)             

                          

 

The effects of septic nonlinearity and the amplitude 

of excitation on the amplitude   and the frequency ratio 
 

 
  are shown in Fig. 3. It can be clearly seen in Fig. 3a 

where the amplitude   shifts to the left as the positive 

nonlinear parameter   reduces, while the frequency 

ratio 
 

 
 versus amplitude   converges to zero if the 

values of amplitude of excitation decrease. 

 

 
Fig. 3 Variation of amplitude with frequency (a) under septic 

nonlinearity and (b) forcing term for     

 

2. Strongly Excited System           
This section will study the damped Duffing 

oscillator under the effect of external excitation 

of     , that is,           and damping parameter 

  and nonlinear parameter     and   are considered to 

be of                                  
Based upon these assumptions the governing Eq. (1) 

becomes as follow: 

   

   
        

  

  
             

                                             
In the next subsection, Eq. (23) will be studied via a 

two timescale perturbation method.  

  
2.1. Application of a Two Timescale Perturbation 

Method 

To construct the approximate analytical solution of 

Eq. (23), a two timescale perturbation method will be 

used. By using Equations (5), (6), and (8) and by 

collecting the terms of      and      following 

problems are obtained: 
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Eq. (24) is a nonhomogeneous linear differential 

equation with variable coefficients. The general 

solution of Eq. (24) is obtained as: 

         
                                              

where   
 

 
           

  

        
, and where    

denotes the complex conjugate. The functions   and   

are the functions of slow timescale    and can be 

determined by eliminating the secular terms from the 

     problem. Putting Eq. (26) into Eq. (25), it 

follows: 

    

   
      

   
  

      
       

               

  
 

   
       

               

         
                   

             
 

         
                   

             
 

         
                   

       

                                                                                    

On the right hand side of Eq. (27), resonances occur 

if the excitation frequency   is equal to the natural 

frequency   of the system, that is, resonances occur if: 

                (subharmonic 

Resonances),  

    
 

 
   

 

 
   

 

 
 (super-harmonic 

resonance). 

 

2.2. Non-Resonant Case 

In this case, the excitation frequency   is taken 

away from the natural frequency   of the system, that 

is,                       
 

 
  

 

 
  

 

 
  

 

 
   In this 

situation, the elimination of secular terms on the right 

hand side of Eq. (27) yields: 

   
  

   
                   

                   

       

                      

                  

                                                       
The solution of Eq. (28) for the function   is put 

  
 

 
     into Eq. (28) and separating the real and 

imaginary parts and it yields below.  

 

2.2.1. Imaginary Part 

     
 

 
                                                                

With      the solution of Eq. (29) is obtained as: 

         
 

 
                                                               

where   is an arbitrary constant and can be determined 

by initial conditions. 

 

2.2.2. Real Part 

 
  

   
       

 

 
   

       
 

  
     

 

  
   

         
 

 
     

 

 
    

 
 

   
                                          

Substitution of Eq. (30) into Eq. (31) yields: 

      
  

 
    

  
 

  
        

  
 

 
       

 

   
         

 
 

   
         

   
 

 
       

 

  
         

 
 

   
          

 
 

    
                           

where    is an arbitrary constant. Thus, the amplitude 

response of the Duffing oscillator in the non-resonant 

case is obtained: 

     
 

 
      

             
  

        
     

                                              
The amplitude response of the doffing oscillator 

under non-resonant cases is obtained in Eq. (33) and is 

shown in Fig. 4. It can be clearly seen that the free 

oscillation solution decays as the time increases and 

hence the steady state response consists of forced 

solution only similar to the linear case. 

 
Fig. 4 Amplitude-response for                       

                 

 

2.3. Resonant Case 

In this subsection, the amplitude response of the 

damped Duffing oscillator will be computed at the 

resonances, i.e., when the excitation frequency    is 

taken as close to the natural frequency   of the system. 

This study is restricted to the following resonant cases: 
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     and 

 

 
   

 

2.3.1. Case-1: When      (Subharmonic 

Resonance) 

In order to show the nearness of excitation 

frequency   to the 5 times natural frequency of the 

system, the detuning parameter   is introduced 

            where   is taken to be       The 

substitution of         into Eq. (27)  and the 

elimination of secular terms in the resulting equation, 

the following two equations after separating the real 

and imaginary parts are obtained. 

Imaginary part: 

    
  

 
 
 

 
 
 

  
     

  

  
    

 
  

  
             

                                                     
Real part: 
   

 
 

 
 
  

 

 
         

 

 
 
 

  
   

  

 
           

 
 

 
 
  

   
   

   

 
     

   

 
           

 

 
 

 
 
 

  
     

  

  
     

  

  
             

                                                                                            
Equations (34) and (35) are non-autonomous 

systems that depend on the time variable. To make it an 

autonomous system: 

  
 

 
           

 

 
                              

By putting Eq. (36) into Equations (34) and (35) it 

yields: 

    
  

 
 
 

 
 
 

  
     

  

  
    

 
  

  
                                    

       
 

 
   

 

 
        

 
 

 
 
 

  
   

  

 
           

 
 

 
 
  

   
   

   

 
    

 
   

 
                             

Equations (37) and (38) are not easy to solve 

analytically. Thus, the numerical Runge-Kutta method 

is used to solve them numerically. The numerical 

solution of the system given in Equations (37) and (38) 

in terms of amplitude is shown in Fig. 5. It can clearly 

be seen that the amplitude response    gets to zero as 

the time   progresses. Hence, the steady-state response 

is only possible for the Duffing oscillator at the 

subharmonic resonance, that is, at        

 
Fig. 5 Steady-state response for                     

                    

 

Hence, to find the steady state response, the time-

dependent terms in Equations (37) and (38) are set to 

zero, namely          . With this, Equations (37) 

and (38) become: 
  

 
  

 

 
 
 

  
     

  

  
    

 
  

  
                                      

 
   

 

 
  
 

 
         

 

 
  

 

  
   

  

 
           

 
 

 
  

  

   
   

  

  
     

   

 
           

 

 
 

 
 
 

  
     

  

  
    

 
  

  
                                                       

Squaring Equations (39) and Eq. (40) and adding 

the resulting equations, the following expression is 

obtained for the detuning parameter  : 
 

 
 

 
   

 

 
          

 

  
   

  

 
          

   
  

   
   

  

  
     

   

 
           

 

 
  
  
  
  
  
  

 
 

 
 
 

 
  

  
     

  

  
     

  

  
      

 

    
  

 
 
 

   
 

     
  

 
      
  

 
       

  

 

 

 

         

Now plugging   
 

 
      into Eq. (41), the 

following equation for the frequency response is 

obtained: 

 

 
   

 

 
   

  

  
  

 

    
                        

where 
 

  

 

 
   

 

 
          

 

  
   

  

 
           

  
  

   
   

  

  
     

   

 
           

  

B  
  

  
     

  

  
     

  

  
     ,       
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The amplitude response for subharmonic resonance 

is then given: 

          
 

 
      

 

     
       

                                                     
Variation in amplitude with frequency at the 

subharmonic resonance, that is,      under the 

effect of damping, force, and septic nonlinearity, is 

shown in Fig. 6 and 7. Fig. 6 depicts that the amplitude 

  bends to the right for the positive value of septic 

nonlinearity (Fig. 6a), while it bends to the left for the 

negative values of nonlinear parameter values (Fig. 

6b). However, the amplitude   seems to converge to a 

line by increasing the damping parameter   . Fig. 7 

shows the relationship between the damping 

parameter  , excitation term   and septic nonlinearity 

parameter  . By increasing the damping, forcing, and 

septic nonlinearity parameter values, the amplitude 

converges to the specific branch value rather than 

multiple branch values. 

 
Fig. 6 Variation of amplitude with frequency under damping and 

nonlinearity for                        (a)   
           

 

 

 

 
Fig. 7 Variation of amplitude with frequency for     under the 

effect of (a) damping  , (b) septic nonlinearity, and    (c) forcing 

term   

 

2.3.2. Case-2:     
 

 
                (Super-

Harmonic Resonance) 

In this case, the nearness of the excitation frequency 

to the natural frequency is expressed by introducing the 

detuning parameter   as 

                                                                    
Substituting Eq. (44) into Eq. (27) and adopting a 

similar procedure as carried out in case I, the frequency 

response cure and amplitude response curve are 

obtained in Fig. 8. 

 
Fig. 8 Steady-state response for                     

                  

 
 

 

 
 

 
 
 

 
   

 

 
          

 

  
   

  

 
          

   
  

   
   

   

 
     

   

 
          

 
 

 

           
  
 
           

           
  
 
           

 
 

     
         

 
  

 
          

 

 

           

The amplitude response   in the superharmonic 

resonance case is given as: 
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The steady-state response in terms of frequency 

response is shown in Fig. 9 and 10. These figures show 

the variation in amplitude with frequency at the super 

harmonic resonance, that is,   
 

 
  under the effect of 

damping, force, and septic nonlinearity. Fig. 9 depicts 

that the sign of the septic nonlinearity parameter   

matters, that is, with a positive value of parameter  , 

the amplitude   bends to the right, whereas with a 

negative value, it bends to the left. 

 

 
Fig. 9 Variation of amplitude with frequency for        

                  (a)      (b)     

 

 

 
Fig. 10 Variation of amplitude with frequency for     with (a) 

septic nonlinearity   and (b) forcing term   

 

However, the amplitude may converge to a specific 

value by increasing the damping. Fig. 10 shows the 

relationship between the excitation parameter   and the 

septic nonlinearity parameter   versus the frequency 

ratio. Fig. 10a shows that the amplitude   shifts to the 

left with increasing positive value of nonlinear 

parameter    While Fig. 10b depicts that the domain of 

frequency ratio reduces as the excitation parameter   

decreases. 

 

2.3.3. Case-3:       (Subharmonic Resonance) 

In this case, the nearness of the excitation frequency 

  with the natural frequency   is expressed by the 

detuning parameter   as: 

                                                                         
By following a similar procedure as discussed for 

Case-I and Case-II resonance cases, the following 

relation for the frequency response curve is obtained:  
 

 
 

  
 

 

 
 
 
 
 
  
 
 
  

 

 
          

 

  
   

  

 
          

   
  

   
   

   

 
     

   

 
     

 

 
 

 
 

  

    
                       

 

 
 
 
 
 
 

  (48) 

Thus, the amplitude response    in this resonance 

case is given as Eq. (49) and Fig. 11: 

          
 

 
      

 

     
       

                                                     

 
Fig. 11 Steady-state response for                        

             

 

Variation in amplitude with frequency at the 

subharmonic resonance, i.e.,      under the effect 

of damping, force, and septic nonlinearity, is shown in 

Fig. 12 and 13. 
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Fig. 12 Frequency response curve for                    

    with (a)         and (b)            

 

 

 

 
Fig. 13 Variation of amplitude with frequency for     under the 

effect of (a) damping    (b) forcing term    and (c) septic 

nonlinearity   

 

Fig. 12 depicts that the sign of septic nonlinearity 

matters, that is, with a positive value of the septic 

nonlinearity parameter, the nonlinear bends to the right 

and with a negative value, it bends to the left. 

However, the amplitude may converge to a specific 

value by increasing the damping. Fig. 13 shows the 

relationship between damping, forcing, and septic 

nonlinearity parameters. By increasing the damping, 

forcing, and septic nonlinearity parameters, the 

amplitude converges to the specific branch value rather 

than multiple branch values, as occurs in nonlinear 

case.  

 

2.3.4. Case-4:    
 

 
  or      

In order to express the nearness of the excitation 

frequency   with the natural frequency   of the 

system, the detuning parameter   is introduced, which 

is of       so it follows: 

                                                                         
By following a similar procedure as discussed 

above, the following relation for the frequency 

response curve is obtained for the resonance case 

  
 

 
 : 

 

 
 

  

 

 

 
 
 
 
 
 
 
 

  
 

 
          

 

  
   

 

  
          

   
  

   
   

   

 
     

   

 
    

     
 

 

 
 

 
 
    

     
 
 
 
 
 
 
 

   (51) 

The amplitude response   is then given as: 

                 
 

     
        

                                                                                         
The variation of amplitude   versus time   at the 

super harmonic resonance, that is,   
 

 
   is shown in 

the Fig. 14. The fluctuation in amplitude with 

frequency under the effect of damping parameter   , 

excitation parameter   and septic nonlinearity 

parameter   is shown in Fig. 15 and 16. Under the 

effect of damping parameter and nonlinearity 

parameter   , Fig. 15 depicts that the sign of septic 

nonlinearity parameter matters, that is, with the 

positive value of parameter  , the amplitude   bends to 

the right whereas with negative value, it bends to the 

left. 

 
Fig. 14 Steady-state response for                     
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Fig. 15 Variation of amplitude with frequency for        

                 (a)         and (b)         

 

 

 
Fig. 16 Variation of amplitude with frequency for     under the 

effect of (a) forcing term   and (b) septic nonlinearity   

 

However, the amplitude may converge to some 

specific value by increasing the damping. Fig. 16 

shows the relationship between the forcing parameter 

and the   and septic nonlinearity parameter  . By 

reducing the excitation parameter   and nonlinear 

parameter  , it can be clearly seen in Fig. 16a and 16b 

that the amplitude   converges to the specific branch of 

values subject to the frequency ratio.  

 

3. Conclusion 
In this paper, the authors studied the nonlinear 

dynamics of a damped Duffing oscillator under the 

effect of external excitation. The authors considered 

both weak and strong external excitations in the 

oscillator system. The external excitation is considered 

to be harmonic time-varying excitation. Furthermore, 

the damping parameter and nonlinear parameters are 

considered constant and small, that is, of 

      Mathematically, the dynamics of the damped 

Duffing oscillator are expressed as second-order, 

seventh-degree nonhomogeneous nonlinear ordinary 

differential equations with constant coefficients. It is 

important to mention that the Duffing oscillator with 

damping and time-varying external excitation with 

seventh-order nonlinearity has not yet been studied. To 

construct the approximate analytical solution of the 

system, a two timescale perturbation method is used. In 

the case of weak external excitation,             it 
turned out that the resonances occur only when the 

excitation frequency   is near or equal to the natural 

frequency   of the system, that is, when    , which 

is known as a primary resonance. The frequency 

response of the Duffing oscillator system is computed 

at the primary resonance. It is found that the amplitude 

reduces to zero as the time increases, that is, only the 

steady-state solution is possible for a weakly excited 

system. In the steady-state case, the variation of the 

amplitude with a frequency ratio under the effect of 

damping, excitation, and nonlinear parameters is 

obtained. It is found that the amplitude bends to the 

right for positive values of the septic nonlinearity 

parameter and to the left for negative values of the 

nonlinear parameter. In case of strong external 

excitation, that is             it is found out that the 

resonances occur if the excitation frequency   is near 

or equal to one time, three times, one-third times, five 

times, one-fifth times, seven times and one-seventh 

times of the natural frequency   of the system, that is, 

when          
 

 
      

 

 
      

 

 
 . Both resonant 

and the non-resonant cases are considered for strongly 

excited systems. The unsteady state solution for the 

non-resonant region in terms of amplitude response is 

computed. It turned out that the response of the system 

behaves like a linear system as the time increases, that 

is, remains constant as the time progresses. In the 

resonant cases, only four resonant cases are taken into 

account:       
 

 
         

 

 
   It is obtained that the 

amplitude response reduces to zero as the time 

increases, that is, the steady-state solution is seen to 

turn up. The amplitude bends and shifts under the 

effects of septic nonlinear and excitation parameters, 

respectively. 
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