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Abstract: The aim of this paper is to study the dynamics of a nonlinear damped Duffing oscillator under the
influence of weak and strong harmonically time-varying external excitation. The mathematical Duffing oscillator is
represented by a nonhomogeneous second-order ordinary differential equation with a seventh degree of
nonlinearity. The approximate analytical solution of the governing equation is obtained in terms of amplitude and
frequency responses via the application of a two timescale perturbation method. The two timescale perturbation
method is used to find (un)steady state solution of the Duffing oscillator for weakly and strongly external harmonic
excitation. It is found that the amplitude response decays as time increases due to the presence of damping in the
system. In addition, the forcing and septic nonlinearity parameters are found to be dominated by the nonlinearity
and amplitude of the system.
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Introduction

The nonlinear Duffing oscillator has a wide range of
applications in science, engineering, biology, and
communication theory, including soliton theory, for
example, magnetoelastic mechanical structures, huge
amplitude oscillation of centrifugal governor structures,
nonlinear vibration of beams and plates, and fluid flow
persuaded vibration. Few issues occurring in different
fields of applied sciences and engineering are linear
whereas many oscillation problems are nonlinear.
Nonlinear oscillations are important in physical
sciences, mechanical structures, and other disciplines,
which are mathematically expressed in the form of
differential equations; most of them are nonlinear. The
methods of solving linear differential equations are
comparatively easy and well established. On the
contrary, the solution techniques of nonlinear
differential equations are less available, and in general,
linear approximations are frequently used. It is very
difficult to solve nonlinear differential equations, and
in general, it is often more difficult to obtain an
analytic approximation than a numerical one. To
overcome this shortcoming, in recent years, many
analytical and numerical methods have been used for
solving these nonlinear differential equations. For
instance, Lindstedt-Poincare perturbation method [1-4],
multiple scale perturbation method [5-15], Homotopy
perturbation method [16-17], energy balance method
[18-19], modified variational approach [20-22],
Adomian decomposition method [23-27], and Laplace
transform method [28-29]. The amplitude—frequency
relationship is important for the accurate prediction of
nonlinear oscillatory systems in many areas of physics
and engineering, especially in nonlinear structural
dynamics. Therefore, the analysis of nonlinear systems
has been widely considered. In recent years, many
powerful methods have been used to find approximate
solutions and the amplitude-frequency relationship to
nonlinear differential equations. The two timescale
perturbation method is one of the most suitable
methods to investigate the nonlinear dynamics of
oscillators. In the literature, the dynamic behavior of
the Duffing oscillator up to degree five is studied.
However, it is still very interesting to examine the
behavior of the forced Duffing oscillator up to degree
seven of nonlinear terms. This study finds (un)steady-
state responses for (non)resonance phenomena for a
forced Duffing oscillator with septic nonlinearity. The
following governing equations of motion [30] for the
Duffing oscillator under septic nonlinearity with initial
conditions are given as follows:

d’u  _du s s ;
W+55+au+ﬁu +yuw+uu’ =F(@) (1)
du

u(0) = xo, E(O) =X (2)
where « >0, 8>0,y >0, u>0 represents hard
spring, a<0,<0,y<0,u<o0 represents

softening spring, F(t) reresents external harmonic
excitation. The damping coefficients are represented by
6 and x, x; represent the initial displacement and
initial velocity, respectively. In Eq. (1), « is taken as
w? as a natural frequency of the Duffing oscillator and
the external excitation as a harmonically excited
system, that is F(t) = Fycos (Qt), where Fyis the
amplitude of external excitation and Q as the excitation
frequency. In this paper, Eq. (1) has been studied for
two different cases of external excitations, i.e. F(t) =
0(e) and F(t) = 0(1). In the next section, the initial-
value problem for two different cases of external
excitations will be studied via a two timescale
perturbation method.

1. Weakly Excited System F(t) = O(¢)
Let us consider that the external excitation F(t),
damping 6 and nonlinear coefficients S, y and u are
considered to be of O(e) . Based upon these
assumptions, Equations (1) and (2) become as follows:
d2

_u + wu + 5d_u + 34 54 7
prY) w*u+e It Lu® +yu + uu
= eFycos(t) 3)

du
u(0) = xo, E(O) =X %)

1.1. Application of a Two Timescale Perturbation
Method

This subsection will study the governing equations
of motion given in Equations (3) and (4) by the
application of a two timescale perturbation method. Let
us consider that the solution of Eq. (3) is of the form
given as:

u(t) = u(Ty, Ty; €) (5)
where the time T, is a fast scale and T; is a slow scale,
that is: T, = tand T, = et. The transformation of
derivatives with these fast T, and slow timescales
T, then becomes:

d 0 N N
dt 9T, ' < o1,
d? 02 92
- = 2 6
a2~ oatg T atrear, ©
By setting Equations (5) and (6) into Eqg. (3) it
yields:
ou +2 ou + - |+ w?
aTZ T “€oT,0T, @

+ [6(au+ 6u+ >+ 3
“1°\ar, T €ar, pu

+yu® + ,uu7] = eFycos(Qt) (7

The expansion of Eq. (5) is in the following form:
u(t) = u(Ty, Ty; €)
= uo(To, T1) + €uy(To, T1)
+ 0(€?) (8)
By putting Eq. (8) into Eg. (7) and equating the
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coefficients of various powers of € and €', 0(1) and

0(e) — problem is obtained as follows:
2

0(1):— oT? ’+w 2uy =0 9
62
0(e):— oTe L+ w?u,
0%u, 8u0 .
aTear, T, — Pug —yug

— pul + Fycos(QT,) (10)

The solution of 0(1) problem given in Eq. (9) can

be obtained directly by integration that is given as
follows:

ug = A(T,)e™To + A(T,)e~@To (11)
where the function A(T;) is defined as follows:
1 .
A(Ty) = 5a(T)e™ (12)

The functions a(T;) and b(T;) can be obtained by
eliminating the secular terms from 0(¢) the problem.
By putting Eq. (11) into Eq. (10), it yields:

azul 02 . .
—t — A iwTy + A —iwTy
o1z T 0"t = 2 |5p o {de ¢ }]

0 . .
— & | {AeiTo + A -leo]
6[6T0{ el@To + Ae~@To}

_ﬂ[Ael(l)To +Ae—ino]3
_.V[Ael(l)To _l_Ae—ino]S
—u[Aei“’TO +Ae‘i‘”T0]7
+ Fycos(0T,) (13)
After lengthy calculations, it turns out that the
resonances on the right-hand side of Eq. (13) occur if
the excitation frequency Q is equal to the natural

frequency w of the system, that is, Q =w . This
resonance is known as primary resonance.

1.2. Amplitude-Frequency Response of the System
at Primary Resonance: Q = w

To show the nearness of 2 to w, one may use
detuning parameters:

Q=w+eo (14)
where the parameter o is taken to be 0(1). By putting
Eq. (14) into Eq. (13), the secular (unbounded) terms
on the right hand side of Eqg. (13) is obtained, which
will violate the uniformity condition for the asymptotic
expansion (8). To obtain uniform asymptotic
approximations, the secular terms on the right-hand
side of Eq. (13) will be eliminated after plugging Eqg.
(14). Thus, the elimination of secular term yield:

d0A _ _
ZLa)a— + SiwA + 3A%A + 10yA3A? + 35uA*A3
Ty

1.
- EFOe‘“T1 =0 (15)
In order to solve Eq. (15) for the function A(T;),
A= %ae“’ will be put into Eq. (15) and separate the
real and imaginary parts to get:

, 1 Fo .
a= —E6a + %sm(aTl —b) (16)
p_3 g, 10 o35
ab =g, he 32151)’/“ 1280
0
- ZCOS(O‘Tl —b) 17)

Equations (16) and (17) are non-autonomous
systems, that is, the system that depends upon the
independent variable time T; in this case. To write
them independent of time variables, it follows n =
oT; —b,s0 b=0T, —n or b’ =0 —n'. With these
substitutions, Equations. (16) and (17) becomes:

, 0 .
== — 1

a 26(1 + o sinn (18)
. 3 ., 10 _ 35
= ag 8wia 320’ % T 12801

0
— 19
+ o cosn (19)

Equations (18) and (19) can be solved for the
amplitude-response a and phase n or alternatively for
b. It is not easy to solve the system of ordinary
differential equations given in (18)-(19) analytically, so
they will be solved numerically. The numerical Runge-
Kutta method is used to solve Equations (18) and (19),

and the solution is shown in Fig. 1.
steady state response
1:2

1

o ©
o ®
——————

Amplitude (a)
o
~

o
N

o
s

-0.2

0 20 40 60 80 100
Time (t)

Fig. 1 Steady-state response forw =2, § = 0.5, § =10, y =

10, p =100, F, = 0.4

It can clearly be seen from Fig. 1 that the amplitude
response a reduces to zero as the time t increases, so a
steady-state solution is possible for a weakly excited
system at the primary resonance.

1.3. Steady-State Solution in Terms of Frequency
Response Curve
For steady state solution, the time-dependent term is

zero into Equations (18) and (19), that is a’ =0,
andn' = 0, it follows:

0 da F, | 20
= =5 — = —
a > =% sinn (20)
05 3 23 5 35 ;
=0 a0 —gofa’ — ooy — g ha
= —%Focosn (21)

After squaring and adding Equations (20) and (21)
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and putting o = %(Q — w), the following expression
for the frequency response curve is obtained:

0_ |3, 5 4, 35
0 807 T 160" T 280"
L s 22
—2 [\a?w? (22)

where § < i.
aw

Fig. 2 depicts that there is a reasonable effect of
septic nonlinearity on the amplitude and frequency. It
is shown that the amplitude a bends to the right for
positive values of the septic nonlinear parameter u
(Fig. 2a), while for negative values of the parameter,
the amplitude a bends to the left (Fig. 2b). However,
the effect of septic nonlinearity u is very rare when the
values of damping parameters reduce 6.

Frequency respanse curve for FeCla)
07 . - i

oé

(a)

Fraquancy response cunae for F=0[e)

100 o 100 200

(b)
Fig. 2 Variation of amplitude with frequency (8) 6 > 0 (b) §,u <
0w=2 =10, y=10,R=0.1

The effects of septic nonlinearity and the amplitude
of excitation on the amplitude a and the frequency ratio

% are shown in Fig. 3. It can be clearly seen in Fig. 3a

where the amplitude a shifts to the left as the positive
nonlinear parameter u reduces, while the frequency

. Q . .
ratio — versus amplitude a converges to zero if the
values of amplitude of excitation decrease.

Frequency response curve for F=0(¢)

“=u = 500
0.8 1
1 = 1000
06 1
L]
04 ,
u = 1500
0.2
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U
4
(a)
Frequency response curve for F=04r)
0.8 F, =15
0.6
"
0.4
af Fg = 10
0.2 a F.:_\-. =5
] L —
4000 2000 [n] 2000 4000

(b)
Fig. 3 Variation of amplitude with frequency (a) under septic
nonlinearity and (b) forcing term for w = 2

2. Strongly Excited System F(t) = 0(1)

This section will study the damped Duffing
oscillator under the effect of external excitation
of 0(1), that is, F(t) = 0(1) and damping parameter
& and nonlinear parameter 8,y and u are considered to
be of §=0(), =0(), y=0(), u=0().
Based upon these assumptions the governing Eq. (1)
becomes as follow:

d*u =, du 3 5 7
W+a) u+e[6E+ﬁu +yu® + uu

= Fycos(Qt) (23)

In the next subsection, Eq. (23) will be studied via a

two timescale perturbation method.

2.1. Application of a Two Timescale Perturbation
Method

To construct the approximate analytical solution of
Eq. (23), a two timescale perturbation method will be
used. By using Equations (5), (6), and (8) and by
collecting the terms of 0(1) and O(e) following
problems are obtained:

Puy
0(1): 372 + w*uy = Fycos(QTy) (24)
0
’u
0(6): a_TOZ + wuy
0%u, ou,
= -2 —_ — — 3
arear,  Oar, P
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Eqg. (24) is a nonhomogeneous linear differential
equation with variable coefficients. The general
solution of Eq. (24) is obtained as:

uy = A(T;)e®To + ReTo + ¢c (26)

where A = 2ae®,andR = —=°_  and where cc
2 2(w?-07%)
denotes the complex conjugate. The functions a and b
are the functions of slow timescale T; and can be
determined by eliminating the secular terms from the
O(e) problem. Putting Eqg. (26) into Eqg. (25), it
follows:
0%u,

2
aTZ + w u,

2
0T,0Ty

d

- 667 [A(T)e'To + Re™Mo + ¢
— BlA(T)eTo + Re™¥o + A(T))e'@To + Re‘imo]3
— y[A(T)e™@To + Re' Mo + A(Ty)e'To + Re“'mo]5
— u[A(Ty)e'To + Re'Mo 4+ A(T,)e'wTo
+ Re~10M0]7 (27)

On the right hand side of Eq. (27), resonances occur
if the excitation frequency Q is equal to the natural
frequency w of the system, that is, resonances occur if:

e N=uw, 3w, 5w, 7w (subharmonic
Resonances),

e 0=ty 1y 1

= 30 5w 0

resonance).

=-2 [A(T)e'To + Re™Mo + ¢

(super-harmonic

2.2. Non-Resonant Case
In this case, the excitation frequency Q is taken
away from the natural frequency w of the system, that

. 17 1 1 1 .
is, Q #w, 2w, 3w, 5w, 7w,5w,§w,gw,;w. In this

situation, the elimination of secular terms on the right
hand side of Eq. (27) yields:

94 _
2iw— + Swid + B(34%A + 6AR?)

oT,

+ v(1043A4% + 60R?A%A

+ 30R*4)

+ u(35A4*A3% + 420R%A3A%

+ 630R*A%A + 140R°A)

=0 (28)

The solution of Eq. (28) for the function A is put

A= %aeib into Eq. (28) and separating the real and
imaginary parts and it yields below.

2.2.1. Imaginary Part

1
wa + E(Swa =0 (29)
With w # 0, the solution of Eq. (29) is obtained as:
1
a(T,) = Ke 2°" (30)

where K is an arbitrary constant and can be determined
by initial conditions.

2.2.2. Real Part

6T1 =3p [Rz az]

1 1
+y[3R4 +—a’R*+—a ]

12 16
+35,u[2R6+2a2+ Ea 4R?
4 8
+ ! 6] 31
128 (1)

Substitution of Eq. (30) into Eq. (31) yields:

1
b(Ty) = B[T1R2—§K2 —5T1]

1
5—|3R*T, — ——=R?K?e~%T1
* [ bo126

1
— _K%e —25T1]
326

U 9 _
35—|2R°T; — < R*K?e™°M
* w[ bo4s ¢

3
_ _R2K4- -26T;
166 = °

1
~ a1 e -35T1]+b0 (32)

where b, is an arbitrary constant. Thus, the amplitude
response of the Duffing oscillator in the non-resonant
case is obtained:

Fo

1 .
= —a(TVe(@To+b(T))i . "0
u(t) Za( 1)e + 2(0? — 02) e

+cc+0(¢) (33)

The amplitude response of the doffing oscillator

under non-resonant cases is obtained in Eg. (33) and is

shown in Fig. 4. It can be clearly seen that the free

oscillation solution decays as the time increases and

hence the steady state response consists of forced
solution only similar to the linear case.

Naorresonant response

inT,

1
0.5[l

‘|||"‘|‘. l"1|| H\II\\I‘II\

||'|I‘fh”” 'H‘U“ ‘. ;I‘|||I|“JIIHHI|H|II

o

u(t)

0 50 100 150 200
t

Fig. 4 Amplitude-response forw =2, Q=1,6 =1, § =10, y =
10, p =100, Fb =4

2.3.Resonant Case

In this subsection, the amplitude response of the
damped Duffing oscillator will be computed at the
resonances, i.e., when the excitation frequency Q is
taken as close to the natural frequency w of the system.
This study is restricted to the following resonant cases:
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1 1
Q= Sw,gw, 7w and .

2.3.1. Case-1: When 2 = 5w (Subharmonic
Resonance)

In order to show the nearness of excitation
frequency Q to the 5 times natural frequency of the
system, the detuning parameter o is introduced
as ) = 5w + g, where ¢ is taken to be 0(1). The
substitution of 0 = 5w + €0 into Eq. (27) and the
elimination of secular terms in the resulting equation,
the following two equations after separating the real
and imaginary parts are obtained.

Imaginary part:

,  ba 1(5R4 +35 RS
=77 w1635“” 6a
+ 1—6;1R3a4’) sin(oTy
—5b) (34)
Real part:
ab’
3 Y /(5 15
— 3 2 1= 45 . p2,3 4
_E B(Ba + 3R a)+w<16a + 2Ra + 15R a)
“w| w35 , 105 315 . .
+5(ma +TR a +TR a’> + 70R a)
+ (5R4+42R6+35 R34) T.
o \1g ROV + gghRa” +TpuR*ar cos(aTy
- 5b) (35)

Equations (34) and (35) are non-autonomous
systems that depend on the time variable. To make it an
autonomous system:

1 1
b=c(oT,—m)=b'=z(c—1) (36)
By putting Eqg. (36) into Equations (34) and (35) it

yields:

_ sa 1<5R4+35R6
T T T W g Y TR

35 )
3,4 )«
+16uRa sinn
"= > B +3r2
an =do m[8<8a a)

V(5 5,15, 3 4)

+(o<16a + 2Ra + 15R*a
u<35 , . 105

o\128% T8

+ ¥R4a3 + 70R6a) (38)

Equations (37) and (38) are not easy to solve
analytically. Thus, the numerical Runge-Kutta method
is used to solve them numerically. The numerical
solution of the system given in Equations (37) and (38)
in terms of amplitude is shown in Fig. 5. It can clearly
be seen that the amplitude response a gets to zero as
the time t progresses. Hence, the steady-state response

is only possible for the Duffing oscillator at the
subharmonic resonance, that is, at = 5w.

(37)

R2a®

35a®Ru
—+

steady state response

Amplitude (a)

20 40 60 80 100
Time (t)

Fig. 5 Steady-state response forw =2, § = 0.5, § =10, y =
10, p = 1000, Fy = 0.4

Hence, to find the steady state response, the time-
dependent terms in Equations (37) and (38) are set to
zero, namely a’ = 0,n" = 0. With this, Equations (37)
and (38) become:

da 115 Rt +35 Ra®
—=——|—=Ra — puRa
2~ wlte Y et
35 3 4|
+EHR a*|sinn (39)
1 /3 5 /5 15
_Zp(243 2,y _ 2. (2 5.22p3,3 4
ac wB(Ba + 3R a) wy(ma + > R°a® + 15R a)
5 35 21 315
- — A7 —_R2,45 — _R4,3 6
0)u(lzga +16Ra + 7 R*a® + 70R a)
—l[iR 4 +E Rab
Tol1e ¢ T Tegtte
+ 3 uR3a4] cosn (40)
16

Squaring Equations (39) and Eq. (40) and adding
the resulting equations, the following expression is
obtained for the detuning parameter o

o

1

3 5 15
= Z[ﬁ (g(lz + 3R2) + ]/(1—6(14 + 7R2a2 + 15R4)

35 21 315
6 2,4 4.2 6
+,u(128a +16R a* + 7 R*a* + 70R )]

w/ 16 64 16

* I San 1 2 41
(=) 2
ht ( 2 ) @ 5a*yR 4 35a°Ru 4 35a*R3u

\ 16 64 16
Now plugging Jzé(ﬂ—a)) into Eq. (41), the

following equation for the frequency response is
obtained:

& 54 la+2 ( * )82 - 52
w wl| T 2C |\a?w?

5\% (15 42 35 2
i (—) {—a4Ry+—Ra6u+—R3a4u}

(42)

5 3 5 15
Z{ﬁ (gaz + 3R2) +y(Ea4 +7R2a2 + 15R4) +

35 21 315

46 _RZ 4 _R4- 2 70R6)

”(128a+16 @A Kat s }
15 4 42 . 35 3 4

B =@ Ry+aRa ”+ER a*u

35a4R3pu

64 16

s5a*yR
16

C =

+
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The amplitude response for subharmonic resonance
is then given:

1 F
u(t) = acos (g Qt — y) + mcos(ﬂt)

Q

+ 0(e) (43)
Variation in amplitude with frequency at the
subharmonic resonance, that is, 0 = 5w under the
effect of damping, force, and septic nonlinearity, is
shown in Fig. 6 and 7. Fig. 6 depicts that the amplitude
a bends to the right for the positive value of septic
nonlinearity (Fig. 6a), while it bends to the left for the
negative values of nonlinear parameter values (Fig.
6b). However, the amplitude a seems to converge to a
line by increasing the damping parameter §. Fig. 7
shows the relationship between the damping
parameter §, excitation term R and septic nonlinearity
parameter . By increasing the damping, forcing, and
septic nonlinearity parameter values, the amplitude
converges to the specific branch value rather than

multiple branch values.

Fraquancy rasponss curve on {1=5.
. - . - -

p = —500

(a)

Fraguamey respangs curve on (1=5,

ady L= 500
N =73
4=2
= 5=1
(b)

Fig. 6 Variation of amplitude with frequency under damping and
nonlinearity forw =2, =10,y =10, R=01 @) u <
0(b)u>0

Frequency response curve on =5

Frequency response curve on {1=5.,
v >

09} L= p = 500

il w = 1000

0 }

06}

0.5}

o u = 1500

1.3

50 0 50 100 160 200 250

e
()

Frequency response curve on 2=5.

'R =0.2

(©
Fig. 7 Variation of amplitude with frequency for w = 2 under the
effect of (a) damping &, (b) septic nonlinearity, and u (c) forcing
term R

232 Case-2: =zw or 50=w (Super-
Harmonic Resonance)

In this case, the nearness of the excitation frequency
to the natural frequency is expressed by introducing the
detuning parameter ¢ as

50=w+c¢e0 (44)

Substituting Eq. (44) into Eq. (27) and adopting a
similar procedure as carried out in case I, the frequency
response cure and amplitude response curve are
obtained in Fig. 8.

1.2

steady state response

1

o
[

(=}
(2]
el

Amplitude (a)
o
~

o
N
A
i

0 20 40 60 80 100
Time (t)

Fig. 8 Steady-state response forw =2, § = 0.5, § =10, y =

10, . =1000, R =04

€ 3 5 15

S8 (gaz + 3R2> +y (—16 a* += R%a? + 15R4)
35 105 315

6 2,4 4.2 6

(1280' +—8 R%a +—4 R*a +70R)

2

YR5 — 21R5u
— 82 (45)

NIP—‘

( 21
2,42
(VR5—21R5u+—R5ua2+7R7 Yot g Rone® + TR u

The amplitude response u in the superharmonic
resonance case is given as:

yR5+21R5;4+—R ua +7R7;4)\/ 4 {
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F
u(t) = acos(5Qt —y) + mcos(ﬂt)

+ 0(¢e) (46)

The steady-state response in terms of frequency
response is shown in Fig. 9 and 10. These figures show
the variation in amplitude with frequency at the super

harmonic resonance, that is, Q) = gw under the effect of

damping, force, and septic nonlinearity. Fig. 9 depicts
that the sign of the septic nonlinearity parameter u
matters, that is, with a positive value of parameter u,
the amplitude a bends to the right, whereas with a
negative value, it bends to the left.

Frequancy responses cune on (=15
07

0.6}
0.5;
o4t
0.3t
0.2}

0}

Fraquancy responsa cunsa on L=108

(b)
Fig. 9 Variation of amplitude with frequency for w = 2, § =
10, y=10,R=01:(@u>0;(b)u<o0

Frequency response curve on {1=1/5
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L - =10.
(J S .‘JuL —————
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e 104
(b)

Fig. 10 Variation of amplitude with frequency for w = 2 with (a)
septic nonlinearity u and (b) forcing term R

However, the amplitude may converge to a specific
value by increasing the damping. Fig. 10 shows the
relationship between the excitation parameter R and the
septic nonlinearity parameter u versus the frequency
ratio. Fig. 10a shows that the amplitude a shifts to the
left with increasing positive value of nonlinear
parameter x. While Fig. 10b depicts that the domain of
frequency ratio reduces as the excitation parameter R
decreases.

2.3.3. Case-3: 2~7w (Subharmonic Resonance)

In this case, the nearness of the excitation frequency
Q with the natural frequency w is expressed by the
detuning parameter o as:

N=70w+¢o0 (47)

By following a similar procedure as discussed for
Case-l and Case-1l resonance cases, the following
relation for the frequency response curve is obtained:

Q

! I
315

+u (%aﬂ + 5 R2gs +—R4a3) | (48)
7

c|lw

w
|[7 {B (Ga?+3r?) +y(Za* +ER% + 15R4)}1
7+%

w

8 4

[ + i#Rzalo — 52
le 1024

Thus, the amplitude response wu in this resonance
case is given as Eq. (49) and Fig. 11:

1 F
u(t) =acos| =0t — )+—cos Ot
(6 = acos (5.0t =) + ——— cos(@r)
+ 0(e) (49)
steady state response
1.4
1.2}
z |
= \
il
04| |
0.2 \'\
% 20 40 60 80 100

Time (t)
Fig. 11 Steady-state response for w = 8, § = 0.5, § = 10, y = 10,
u=100,R=0.1

Variation in amplitude with frequency at the
subharmonic resonance, i.e., Q = 7w under the effect
of damping, force, and septic nonlinearity, is shown in
Fig. 12 and 13.
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Fig. 13 Variation of amplitude with frequency for w = 2 under the
effect of (a) damping &, (b) forcing term R, and (c) septic
nonlinearity u

Fig. 12 depicts that the sign of septic nonlinearity
matters, that is, with a positive value of the septic
nonlinearity parameter, the nonlinear bends to the right
and with a negative value, it bends to the left.
However, the amplitude may converge to a specific
value by increasing the damping. Fig. 13 shows the

relationship between damping, forcing, and septic
nonlinearity parameters. By increasing the damping,
forcing, and septic nonlinearity parameters, the
amplitude converges to the specific branch value rather
than multiple branch values, as occurs in nonlinear
case.

2.3.4. Case-4: ~%w or7’ =w

In order to express the nearness of the excitation
frequency Q with the natural frequency w of the
system, the detuning parameter o is introduced, which
is of 0(1), so it follows:

70=w+¢e0 (50)

By following a similar procedure as discussed
above, the following relation for the frequency
response curve is obtained for the resonance case
O~

7

(]

g
1+
B (2a? +3R?) +y(Za* +Za?R? + 15R*)

(i a® + 222 R2g% + 3—15R4az)
+'u 8 4

. - +70R® (51)
| 1 [ |
The amplitude response u is then given as:
u(t) =acos(70t —y) + a,z:)z cos(2t) +
0(e) (52)

The variation of amplitude a versus time t at the
. . 1 . .
super harmonic resonance, that is, Q = Zw s shown in

the Fig. 14. The fluctuation in amplitude with
frequency under the effect of damping parameter &,
excitation parameter R and septic nonlinearity
parameter u is shown in Fig. 15 and 16. Under the
effect of damping parameter and nonlinearity
parameter u, Fig. 15 depicts that the sign of septic
nonlinearity parameter matters, that is, with the
positive value of parameter u, the amplitude a bends to
the right whereas with negative value, it bends to the
left.

steady state response
1.2 . .

T

Amplitude (a)
©c o ©
> o »

©
N

(@]

% 20 40 60 80 100
Time (t)
Fig. 14 Steady-state response forw =8, § = 0.5, § =10, y =
10, n =100, R =04
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Fig. 16 Variation of amplitude with frequency for w = 2 under the
effect of (a) forcing term R and (b) septic nonlinearity u

However, the amplitude may converge to some
specific value by increasing the damping. Fig. 16
shows the relationship between the forcing parameter
and the R and septic nonlinearity parameter u. By
reducing the excitation parameter R and nonlinear
parameter g, it can be clearly seen in Fig. 16a and 16b
that the amplitude a converges to the specific branch of
values subject to the frequency ratio.

3. Conclusion

In this paper, the authors studied the nonlinear
dynamics of a damped Duffing oscillator under the
effect of external excitation. The authors considered
both weak and strong external excitations in the
oscillator system. The external excitation is considered
to be harmonic time-varying excitation. Furthermore,
the damping parameter and nonlinear parameters are
considered constant and small, that is, of
0(e). Mathematically, the dynamics of the damped
Duffing oscillator are expressed as second-order,
seventh-degree nonhomogeneous nonlinear ordinary
differential equations with constant coefficients. It is
important to mention that the Duffing oscillator with
damping and time-varying external excitation with
seventh-order nonlinearity has not yet been studied. To
construct the approximate analytical solution of the
system, a two timescale perturbation method is used. In
the case of weak external excitation, F(t) = 0(e), it
turned out that the resonances occur only when the
excitation frequency Q is near or equal to the natural
frequency w of the system, that is, when Q = w, which
is known as a primary resonance. The frequency
response of the Duffing oscillator system is computed
at the primary resonance. It is found that the amplitude
reduces to zero as the time increases, that is, only the
steady-state solution is possible for a weakly excited
system. In the steady-state case, the variation of the
amplitude with a frequency ratio under the effect of
damping, excitation, and nonlinear parameters is
obtained. It is found that the amplitude bends to the
right for positive values of the septic nonlinearity
parameter and to the left for negative values of the
nonlinear parameter. In case of strong external
excitation, that is F(t) = 0(1), it is found out that the
resonances occur if the excitation frequency Q is near
or equal to one time, three times, one-third times, five
times, one-fifth times, seven times and one-seventh
times of the natural frequency w of the system, that is,
when Q = w, 3w,%a), Swéa), 7a),%a). Both resonant
and the non-resonant cases are considered for strongly
excited systems. The unsteady state solution for the
non-resonant region in terms of amplitude response is
computed. It turned out that the response of the system
behaves like a linear system as the time increases, that
is, remains constant as the time progresses. In the
resonant cases, only four resonant cases are taken into

account: Q) = 5w, iw, 7w, %w. It is obtained that the

amplitude response reduces to zero as the time
increases, that is, the steady-state solution is seen to
turn up. The amplitude bends and shifts under the
effects of septic nonlinear and excitation parameters,
respectively.
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