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Abstract: Plastic waste accumulation has been recognized as one of the most critical challenges of
modern societies worldwide. Traditional waste management practices include open burning, landfill-
ing, and incineration, resulting in greenhouse gas emissions and economic loss. In contrast, emerging
techniques for plastic waste management include microwave-assisted conversion, plasma-assisted
conversion, supercritical water conversion, and photo reforming to obtain high-value products.
Problems with poorly managed plastic waste are particularly serious in developing countries. This
review article examines the emerging strategies and production of various high-value-added products
from plastic waste. Additionally, the uses of plastic waste in different sectors, such as construction,
fuel production, wastewater treatment, electrode materials, carbonaceous nanomaterials, and other
high-value-added products are reviewed. It has been observed that there is a pressing need to utilize
plastic waste for a circular economy and recycling for different value-added products. More specifi-
cally, there is limited knowledge on emerging plastic waste conversion mechanisms and efficiency.
Therefore, this review will help to highlight the negative environmental impacts of plastic waste
accumulation and the importance of modern techniques for waste management.

Keywords: plastic waste; emerging strategies; recycling; high-value-added products; sustainable
environment

1. Introduction

Considering stability and flexibility, the plastics are impeccably adequate for use with
numerous accomplishments [1–3]. Plastics are now the world’s third-largest production
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material, second only to concrete and steel [4]. Similarly, due to its widespread applications
across the globe, plastic manufacturing may continue in the future [5,6]. The manufacturing
and use of plastic products on a global level have been on the rise since 1950. Approximately
8300 million tons of plastic were made, and 6300 million tons of plastic waste were thrown
in landfills or dispersed into the environment [1,7,8]. In addition, about 415 million tons of
plastic are produced annually worldwide [9]. China is one of the largest plastics producers
in the world. China has an (approximate) 25% share of plastics in the world. In the
last five years, plastic production exceeded 77 million tons, while Europe’s production
exceeded 60 million tons [10]. Approximately 36% of plastics are used for packaging, 16%
for construction, 15% for textile, 10% for consumer and institutional products, and the
remaining 33% for the transportation of electronics and industrial products.

Plastic-based products are energy-demanding because they need 62–108 MJ of energy
to produce 1 kg of plastic materials and more than 4% of oil and gas consumption glob-
ally [1]. The contribution of plastic waste to municipal solid waste (MSW) is significant and
cannot be ignored [11,12]. For example, plastic materials in MSW in China and the United
Kingdom are around 11%, the United States—13%, and the European Union—8% [1]. Sri
Lanka, Vietnam, Indonesia, China, and the Philippines contribute approximately 56% of
plastic waste [10]. Comparatively, recycling other waste materials (such as metal, paper,
and glass) is higher than plastic waste. The recycling rate of metal waste is 80%, paper
waste is 60%, and glass waste is around 50%. At the same time, the recycling of plastic
waste is nearly 14–18% [1,13]. Likewise, part of recycling, 24% of plastic waste is man-
aged through energy recovery, and the remaining 58–62% has directly been disposed of in
landfills or open environments [14]. Due to the poor global waste management policies,
around 10–12 tons of non-degradable harmful plastic waste have been dumped in water
bodies [15,16]. It is also estimated that 1.2–2.4 tons of plastic waste enter the ocean from
rivers annually [17,18].

Plastics are heterogeneous in nature; nonetheless, regarding most of their ‘control’,
such as gasification and incineration, they are processed together, so they are not suitable
for mechanical recycling as part of mixed plastics because they contain more polymers [19].
Therefore, specific technologies, such as pyrolysis, can be useful for recycling as a raw
material or fuel. Disadvantages of discarded plastic recycling include a lack of plastic
waste collection and processing infrastructure, complex recycling processes, low economic
returns, and inadequate downstream consumers [20,21]. Furthermore, cheap crude oil
promotes virgin plastic production costs lower than recycling [22]. For instance, from 2006
onward, the price of low-density polyethylene (PE) in the United States fell by 95% from
USD 480 to USD 26 per ton. Polypropylene (PP) and poly(ethylene terephthalate) (PET) fell
by 90% and 7%, correspondingly [23]. The recovery rate proves the severe failure of the
traditional “take, make, and discard” model. However, many plastic types are not suitable
for this unique system; thus, recycling, recovery, and reusing are better solutions because
plastic products may not be fully stopped [24]. For instance, PET-based plastics are more
appropriate for infrastructure development [25]. Likewise, the conversion of mixed plastics
to their chemical compositions is technically problematic and economically unfeasible [26].

Therefore, long-term solutions are required as a comprehensive approach and circu-
lar economy principles, including open-loop and closed-loop systems. These paradigm
shifts will further promote the expansion of the recycling system because it decreases the
wasting of raw materials and the over-exploitation of resources. Technological innovation
minimizes the problem of discarded plastic; however, the sustainability of this innovation
and implementation still deserves attention [27,28]. In several recent studies, life cycle
assessment (LCA) was used to study the environmental sustainability of one or more
systems in specific cases. Schwartz et al. [29] calculated the ecological impact of ten nom-
inated recycling technologies for plastic polymers. Lee et al. [30] evaluated the carbon
footprint of converting discarded plastic into energy through pyrolysis in South Korea. Gu
et al. [31] performed LCA for discarded plastic management using mechanical recycling
in China. Likewise, using pyrolysis technology, LCA was used for chemical recycling of



Sustainability 2022, 14, 11637 3 of 27

mixed discarded plastic and compared with recycling [32]. Bajpai et al. [33], found that the
combination of both chemical and mechanical recycling of lightweight packaging is more
environmentally friendly and economically advantageous than mechanical recycling alone.
Keldrup et al. [34] found that compared to centralized recycling in Singapore, the impact of
categorization and reuse of plastic waste is approximately 7–30% higher.

A historic resolution, entitled “End plastic pollution: towards an internationally legally
binding instrument” was passed by the United Nations (UN) Environment Assembly in
Nairobi, on 2 March 2022, comprising 175 representatives from different countries, who en-
dorsed ending plastic waste in the environment. The resolution endorsed the establishment
of an intergovernmental negotiating committee (INC) to initiate a negotiation, aiming to
complete the draft of a legally binding agreement by the end of 2024. The resolution aims
to address three main objectives, which would reflect: (i) different alternatives to focus on
the full lifecycle of plastic waste, (ii) the design of recyclable and reusable plastic materials
and products, and (iii) the need for improved international collaboration to facilitate access
to new technology. The European Union (EU) is addressing the global agreement on plastic
waste to maintain the global shift to a circular economy, endorsing the UN resolution of
March 2022 to end plastic pollution.

Plastic waste accounts for more than 11% of the total MSW disposed of in landfills [35].
Consequently, it is important to design potential strategies for plastic waste management.
Therefore, the gist of this review is to discuss an environmentally sustainable plan from a
range of different technologies. Furthermore, this review article aims to discuss promising
methods for utilizing plastic waste for a circular economy, e.g., the application of plastic
waste in construction aggregates, electrode materials, carbonaceous materials, fuel pro-
duction, wastewater treatment, textile products, and other high-value-added materials.
Moreover, the global production of plastic waste and its environmental impacts are critically
examined.

1.1. Production, Types, and Characteristics of Plastic Waste

Figure 1a shows the global contribution of plastic waste in MSW. However, the organic
matter, plastic, glass, paper, metal, and others in MSW are 46%, 10%, 4%, 17%, 5%, and
18%, respectively [36]. Figure 1b shows the trend of waste generated, discarded, recycled,
and incinerated from 1950 to the data projections for 2050. Figure 1c shows the distribution
of global plastic waste generated (in million tons).
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Updated data show that since 1950, the global plastics industry has increased at an
average annual rate of 2.7 times. In 2018, the global market for plastic products was esti-
mated at 359 million tons [38]. The economic developments of many countries worldwide
show that the greater the economic growth, the higher the use of plastic. According to
statistics, the average annual plastic consumption in the United States is 170 kg, in Belgium
200 kg, in China 46 kg, and in India just 9.7 kg per capita [39]. The classification of plastic is
given in Figure 1d. Thermoplastics, e.g., polyethylene, poly(vinyl chloride), polypropylene,
polystyrene, polycarbonate, and poly(tetrafluoroethylene) are hardened when cooled [40].
Thermosetting plastics do not undergo plastic deformations when heated [41]. The avail-
able plastic materials are abundant, the output is large, the application is wide, the cost is
low, and the molding process is easy [42]. Different types of plastics and their characteristics
are given in Table 1.
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Updated data show that since 1950, the global plastics industry has increased at an
average annual rate of 2.7 times. In 2018, the global market for plastic products was esti-
mated at 359 million tons [38]. The economic developments of many countries worldwide
show that the greater the economic growth, the higher the use of plastic. According to
statistics, the average annual plastic consumption in the United States is 170 kg, in Belgium
200 kg, in China 46 kg, and in India just 9.7 kg per capita [39]. The classification of plastic is
given in Figure 1d. Thermoplastics, e.g., polyethylene, poly(vinyl chloride), polypropylene,
polystyrene, polycarbonate, and poly(tetrafluoroethylene) are hardened when cooled [40].
Thermosetting plastics do not undergo plastic deformations when heated [41]. The avail-
able plastic materials are abundant, the output is large, the application is wide, the cost is
low, and the molding process is easy [42]. Different types of plastics and their characteristics
are given in Table 1.

Table 1. Different types of plastics and their characteristics.

Plastic Proximate Analysis (wt. %) Elemental Analysis (wt. %) Heating Value
(MJ/kg) Reference H/C

Efficiency

V M FC A M C H N O S Cl
PET 86.83 13.11 0 0.06 62.51 4.19 0 33.30 0 - 30.85 [43] 0.01

85.0 10.6 4.4 0 66.2 4.9 0 28.9 0 0 - [44] 0.23
87.1 12.9 - - 62.1 4.8 - 33.1 23.92 [45] 0.13
89.2 10.3 0.1 0.4 62.7 4.4 0 32.8 0 - 23 [46] 0.06
88.61 11.39 - - 64.22 4.65 0.05 30.53 0.55 - - [47] 0.15
84.1 13.9 - - 64.1 3.7 - 34.2 - - 23.97 [48] 0.11
83.92 13.78 1.84 0.46 62.48 4.80 0.32 - 0 - 40.34 [49] 0.91
90.57 9.43 0 0 62.93 4.26 0 32.81 0 - 21.25 [50] 0.03

HDPE 99.46 0 0.34 0 81.45 12.06 0.34 5.36 0.79 0 - [51] 1.66
100 0 0 0 82.9 15.47 0 1.63 0 0 - [44] 2.21
100 - - - 85.43 14.21 0.08 0.15 - - 38.66 [52] 1.99
100 0 0 0 85.11 14.57 0.32 0 0 - - [53] 2.04
100 - - - 85.86 14.14 - - - - - [54] 1.98
99.7 0.3 - - 85.71 14.29 0 0 - - 43.1 [55] 2
99.9 0 0.1 0 85.5 14.5 0 0 0 - 46.4 [46] 2.04
99.4 - 0.6 - 83.8 14.2 - - 0.3 - - [56] 2.03
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Table 1. Cont.

Plastic Proximate Analysis (wt. %) Elemental Analysis (wt. %) Heating Value
(MJ/kg) Reference H/C

Efficiency

97.15 - 0.8 0 86.5 15.1 - - 0.25 - 43.01 [48] 2.09
100 0 0 0 85.4 14.6 - - - - - [57] 2.05

PVC 94.9 5.1 0 0 39.6 4.9 0.5 0 1.8 53.2 - [58] 1.42
96.41 3.42 0 0.17 38.19 4.94 - - - 47.66 21.66 [59] 1.55
95.8 4.2 0 0 38.7 4.8 0 0 0 56.5 19.3 [60] 1.49
94.93 5.07 0 0 38.34 4.47 0.23 - 0.61 56.35 20.83 [61] 1.37
- - - - 39.66 5.24 0 - 0 55.04 20.38 [62] 1.59
94.7 5.1 0.04 0.2 39.5 4.9 0.5 - 1.8 53.2 20.66 [63] 1.42
94.78 5.06 0 - 38.56 4.6 0 0 0.4 57.04 19.88 [64] 1.42
88.95 8.67 2.36 0.02 38.80 5.14 0.09 - - 53.61 - [65] 1.58
94.75 5.25 0.64 38.15 4.35 0.16 - 0.45 56.25 - [66] 1.35
94.78 5.06 0 0.16 38.34 4.47 0.23 - 0 56.96 - [67] 1.38

LDPE 100 0 0 0 82.18 16.37 0 1.45 0 0 - [44] 2.36
99.7 - 0.3 - 85.5 14.3 - - 0.2 - - [56] 2.01
99.9 - 0.1 - 85.9 14 - - - - 43.1 [68] 1.96
100 0 0 - 85.7 15.3 0 0 0 - - [69] 2.02
99.08 0 0.02 0 86.35 13.58 0 0 0.074 - 46.15 [70] 1.89
99.7 0.3 0.3 - 85.2 14.1 - 0.5 0.2 - - [71] 1.98
100 0 0 - 85.46 13.54 0 1 - - - [72] 1.88

PP 100 0 0 0 85.1 13.38 0 1.52 0 0 - [44] 1.86
100 0 0 0.08 84.80 14.55 0.14 0.28 0.23 - 45.80 [43] 2.05
99.8 0 0.1 0.2 85.4 14.5 0 0 0 - 46 [46] 2.04
98.9 - 1.1 - 83.8 13.9 - - 2.3 - - [56] 1.97
96.9 - 1 0 84.7 15.3 - - 2.1 - 45.08 [48] 2.15
93.84 2.04 3.68 0.44 83.28 13.81 0.01 - 0.01 - 44.43 [49] 1.99
98.54 1.06 - 0.40 83.74 13.71 0.02 0.98 0.08 - - [73] 1.95
99.6 0.1 0.2 0.1 86.5 12.9 0.3 - 0.3 - 37.6 [74] 1.78
99.85 0 0.15 0 85.03 14.80 0 0 0 - 42.80 [65] 2.09

PS 100 0 0 0 91.2 8.8 0 0 0 0 - [44] 1.16
100 - <0.3 - 90.9 7.7 <0.1 1.4 - - - [75] >0.99
99.58 0.05 0.09 0.29 92.12 7.88 - 0.01 - - - [76] 1.03
99.5 0.5 - - 92.2 7.8 - - - - - [77] 1.02
99.12 0.39 0.04 - 92.16 7.72 0 0 0.26 0.36 37.45 [64] 1
99.76 0.24 0 0 92.04 7.29 0 0.67 - - - [72] 0.94
94.33 4.55 0.28 0.84 89.2 8.78 0.01 - 0 - 40.34 [49] 1.18
97.71 0.45 0.98 0.86 90.34 9.06 0.29 0.31 - - 43.58 [78] 1.19
98.8 0 0.3 0.2 90.4 8.6 0.4 0.6 - - 42.3 [79] 1.12
99.24 0.02 0.24 0.50 90.55 7.82 0.17 0 1.22 - 38.60 [65] 1.02
99.12 0.39 0.04 0.45 86.06 6.27 5.73 1.93 0 - - [67] 0.67

PC 80.47 19.48 0.05 0 75.71 5.47 0 18.82 - - 30.08 [72] 0.49
PU 83.20 10.60 6.20 - 62.69 6.32 6.37 24.01 0.63 - 26.03 [80] 0.37
ABS 100 0 0 0.05 75.44 8.19 4.74 3.44 8.19 - 38.09 [43] 0.99

V denotes volatile matter, A represents ash, FC denotes fixed carbon, M shows moisture content, C shows carbon,
H shows hydrogen, O represents oxygen, N denotes nitrogen, S denotes sulfur, Cl shows chlorine, HHV shows
higher heating value, LHV denotes lower heating value, G shows gross heating value.

1.2. Plastic Waste Degradation and Socioeconomic Impacts

Although the use of plastics brings many benefits, unmanaged manufacturing, uti-
lization, and discarding methods lead to the exhaustion of non-renewable assets, environ-
mental problems, climate change, and a negative impact on the subsistence of flora and
fauna [81]. Petroleum-based plastics in 2015, during their life cycle, emitted an equivalent
of 1781 Mt CO2. If the same trend is sustained, the emissions of petroleum-based plastics
are expected to rise to an equivalent of 6500 Mt CO2. in 2050 [82]. More specifically, be-
tween 1950 and 2015, 79% of plastic waste was reported as poorly managed. This means
there are 5 billion tons of plastic waste in landfills or the natural environment. By 2050,
the cumulative amount of plastic produced will reach 34 billion tons. According to the
current consumption level, plastic waste in landfills or the environment will reach 12 billion
tons [14]. Sub-Saharan Africa is one of the regions lacking waste-control resources. Waste
produced by 2050 will surge by 300%, which coincides with the expected boom in plastic
manufacturing in the region, demonstrating the determination of area [83]. Plastic waste,
because of its stability, may be categorized as ‘persistent pollutants’.
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Figure 2 displays the time required for numerous plastic objects to degrade, for
instance, the degradation of plastic bottles takes 450 years [84], but microplastics are formed
that are ingested by the marine species [85,86] and appear in the form of seafood, salt,
and water to us [85]. In oceans, nearly 51 trillion microplastics are floating. These floating
microplastics are 500 times more than the stars in our galaxy. Synthetic fabrics, tires, road
markings, ship coatings, and plastic particles add microplastics to oceans. Large numbers of
animals are entangled in plastics. As per UNESCO statistics [87], more than 1 million birds
and more than 0.1 million marine species die each year after ingestion or entanglement
of plastic waste. Mato et al. [88] reported that the uptake of hazardous chemicals, i.e.,
pesticides by plastics, pollute the marine food chain, whereas Tanaka et al. [89] reported
high levels of polybrominated diphenyl ethers in 3 of the 12 seabirds analyzed.
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Figure 2. The degradation time of different types of plastic.

Furthermore, humans are worried about the potential impact of consuming marine
species containing toxins that are harmful to humans [90], but their impact is still not
fully understood [91]. This is worrying, so it is critical to carry out such potential impact
assessments. Land animals, including goats, buffaloes, sheep, etc., face similar risks
from ingesting plastic, blocking the gastrointestinal tract, and causing death. Chemical
substances can escape from such plastics affecting beef and milk. In addition, clogged
rainwater drainage systems, parasitic diseases as a breeding ground, indiscriminate fires,
and possible respiratory disorders are associated with plastic waste pollution. According
to reports, the total annual loss caused by plastic waste is approximately USD 13 billion,
including tourism because of lessened aesthetics, recreational actions, and fishing [92].
Figure 3a shows the socioeconomic and environmental impacts of mismanaged plastic
waste, and Figure 3b shows sustainable development goals.
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2. Plastic Waste Management Strategies

Due to the non-degradable nature and poor waste management practices, a huge
quantity of plastic waste has been accumulated in the environment [93,94]. Post-consumer
plastic waste is generally managed through landfills, incineration, and recycling [95].
However, these methods have no substantial effects on decreasing the quantity of discarded
plastic waste. Therefore, such techniques have nothing to do with practice because landfills
and incineration cause serious environmental issues. Innumerable stakeholders have
attempted to substitute the current discarded plastic waste control practices. In addition,
reusing and recycling plastic waste is more effective than incineration and landfilling [96].
However, because of the increase in the amount of plastic waste generated every day,
the current recycling strategies cannot reduce the negative effects of plastic pollution [97].
Therefore, it is necessary to find sustainable applications for plastic waste management to
overcome these problems [98]. Figure 4 shows conventional and emerging strategies to
overcome plastic waste problems.
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2.1. Conventional Strategies
2.1.1. Plastic Waste Landfill

Landfilling is an ancient technique to handle solid waste issues, including plastic
waste [100]. As per the OECD statistics, it is assessed that 79% of plastic waste is managed
using landfills or leaked into the environment [8]. Plastic landfills are considered the last
resort for managing plastic waste, as they require a lot of space and can cause long-term
pollution problems [101]. Compared to other waste management practices; the operating
costs of plastic waste-based landfill processes can be quite low, but the environmental
issues of this technique are regularly questioned. Over time, toxic additives and other
possible pollutants decomposing from discarded plastic will eventually contaminate the
soil and water bodies [102]. Moreover, it is hard for discarded plastic (which has good
physiochemical strength and long service life) to decompose naturally. At the same time,
plastic waste is light and can float in the wind or on water [103]. Nevertheless, landfilling
has severe disadvantages; discarded plastic, due to its low density, large volume, and large
landfill space, has aggravated the scarcity of land resources [104]. The engineered landfill
can produce synthesis gas that can be collected and used for energy production.

2.1.2. Incineration

Incineration is extensively applied as one of the treatment approaches used to decrease
the volume of solid waste [105]. Incineration can reduce approximately 80% to 90% of
different kinds of debris, which is an important advantage [106]. The incineration of plastic
waste would emit hazardous emissions and detrimental constituents, including particulate
matter, dioxins, CO, furans; metals, and volatile organic chlorides [107]. The incineration
process helps to dispose of plastic waste on an industrial scale. Moreover, it produces heat
energy used for electricity generation and other accomplishments [108]. Incineration of
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waste with a high moisture content of 60% to 65% is not feasible because it will affect the
rate of energy production during incineration [109].

2.1.3. Pyrolysis

In pyrolysis, plastic waste is broken down into carbon monoxide, hydrogen, methane,
and high-quality hydrocarbons, which can be used as fuel. Ruj et al. [110] established a pro-
cess of directly converting mixed discarded plastic, except PVC, into synthesis gas, which
is utilized to generate electricity. Huang et al. [111] and colleagues showed that, through ac-
celerated decomposition, plasma pyrolysis reacted completely to the low molecular weight
compound methane. The advantage of pyrolysis is that it has the ability to ‘carry out’
dirty and unsorted plastic waste. Pyrolysis is also non-toxic and has non-environmentally
harmful emissions, unlike incineration. The disadvantages of pyrolysis are the lack of
product control and low energy efficiency.

2.1.4. Gasification

Plastic waste is degraded by using gasification technology, such as air, steam, and
oxygen to generate synthesis gas mainly comprising CO, H2, and CH4 [112]. The most
frequently used technologies for plastic waste gasification are fixed beds, fluidized beds,
and entrained flow gasifiers [113]. The combustion of discarded plastic produces haz-
ardous gases, i.e., carbon dioxide, nitrogen oxide, sulfur oxide, and hydrocarbons [114].
Therefore, syngas produced through gasification is environmentally friendly compared to
combustion [115]. The disadvantage of gasification involves air being used as a gasifying
agent resulting in a decrease in the calorific value of produced syngas.

2.1.5. Mechanical Reprocessing

The primary recycling method for plastic waste is mechanical reprocessing, which com-
prises heating, shredding, and remolding [116]. This method of mechanical treatment of
plastic waste mainly produces plastics with inferior properties [19]. The number of mechan-
ical reprocessing cycles is limited. Thermal conversion processes, such as gasification and
pyrolysis, are commonly used to produce low-value-added products, including syngas and
other carbonaceous derivatives [117]. Moreover, in thermochemical conversion processes,
high temperatures of 400 ◦C to 900 ◦C are maintained to overcome the unfavorable kinetics
and thermodynamics of these reactions [117]. The advantages of mechanical reprocessing
are that it is less energy intensive and does not use toxic chemicals. The disadvantage is
that mechanical reprocessing often decreases the tensile strength of plastics.

2.1.6. Biochemical Conversion

Synthetic polymers having high molecular weights are biodegraded using microorgan-
isms. However, the application of such microorganisms for biodegrading high molecular
weight synthetic polymers is limited commercially [118,119]. The microorganisms interact
with abiotic elements, particularly light and heat, to alter polymer structures and provide
a favorable environment for enzymatic degradation [120]. The bacteria mainly involve
the biodegradation of plastic waste, algae fungi found in compost, landfill leachate, and
sewage sludge. The bacteria are capable of biodegrading synthetic and natural polymers.
Microbial biomass is a waste product of biodegradation [121]. Biochemical conversion of
plastic has the advantage of low processing temperatures and high selectivity of products
produced. However, they usually require preprocessing phases and long treating times.

The pyrolysis and gasification of plastic waste are most suited for plastic waste con-
version into valuable products. Furthermore, these methods are environment-friendly and
do not require large spaces for plant installation.
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2.2. Emerging Strategies
2.2.1. Microwave-Assisted Conversion

Compared to conventional strategies of plastic waste management, microwave-assisted
conversion provides an efficient route for recycling plastic waste [122]. Microwave-assisted
recycling of plastic waste accelerates the chemical reactions by reducing the reaction temper-
ature and time, thus acquiring higher chemo-selectivity and production [123]. Furthermore,
water as a reaction medium absorbs microwave energy efficiently and can be superheated.
Microwave irradiation depolymerized biopolymers, including starch and cellulose, are
rapid, efficient, and environmentally friendly [122]. Microwave-assisted conversion pro-
vides a circular economy because it produces chemicals used as property enhancers in
polymers [124]. Microwave-assisted conversion has some advantages, such as non-contact
volumetric heating and higher energy efficiency. The disadvantages are the electrical power
and required microwave adsorbents.

2.2.2. Plasma Assisted Conversion

Polystyrene (under atmospheric pressure and ambient temperature) is efficiently
hydrogenated using nonthermal plasma-assisted conversion [125]. Plasma-assisted non-
thermal H2 offers a unique source for obtaining a relative hydrogen species, particularly in
radicals and ions that effectively break the C-C bond in the polymer structure. Furthermore,
the plasma-assisted non-isothermal hydrogenolysis procedure directly valorizes products,
excluding pretreatment importance, allowing minimum influence by impurities and con-
taminants [126]. Plasma-assisted conversion has some advantages, such as a higher yield
of syngas and lower tar content. The limitation involves higher energy utilization during
the plasma-assisted conversion process.

2.2.3. Supercritical Water Conversion

Traditional plastic waste management strategies cannot produce clean energy [127].
Therefore, supercritical water conversion technology produces efficient and clean energy
from plastic waste. Different studies have been conducted to investigate the effect of
supercritical water on plastic waste recycling [128]. Bai et al. [129] investigated the py-
rolysis behavior of low-density polyethylene and heavy oil using supercritical water at a
temperature of 420 ◦C and observed that HDPE as an H-donor tremendously inhibited
the aromatic component condensation and coke formation. High H2, low CO yields, a
high reaction rate, and low tar and char formation are the advantages of this method.
This method shows drawbacks for large-scale feasibility and might cause the plugging of
reactors during long runs.

2.2.4. Photo Reforming

Researchers have extensively investigated photocatalytic reforming of plastic waste
because of its high efficiency and environmentally friendly behavior [130]. Photo-reforming
of plastic waste is a promising technology among various plastic waste management
techniques, having the potential to harvest solar energy [131]. After harvesting solar energy,
it is efficiently converted into high-energy-density hydrogen fuel. The promising solution
to the energy crisis involves the photo-reforming of plastic waste because hydrogen is
an ideal gas possessing a high energy value and zero environmental emissions [132]. A
pretreatment method of plastic waste is commonly applied to enhance the reactivity of
plastic photo-reforming to hydrolyze plastic into monomeric ethylene glycol. Moreover,
numerous photocatalysts are synthesized for plastic photo-improving to produce hydrogen,
including CN/Ni2P and TiO2/Pt [132,133].

2.2.5. Compatibilization

Additives allow two polymer resins to bond to improve the final product in com-
patibilization. Adding additives in plastic recycling facilitates the adherence of plastic
blends that are difficult to mix with or adhere to. The plastic materials that are not easily
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recycled include composite plastics, flexible packaging, and other plastic materials best
suited for chemical recycling through compatibilizers. There are high costs associated with
the reactions that involve long residence times. Furthermore, such resins may be used as
secondary raw material in another product, mitigating dependence on crude oil.

2.2.6. Polymer Design and Modification

In recent years, chemically recyclable polymers have been designed and developed
to manage plastic waste at the end of its useable life. The mechanical reprocess degrades
polymer quality and results in residual impurities after multiple reuse cycles [134]. Nev-
ertheless, via depolymerization, chemical recycling can recover the precursor building
blocks. The polymers that can easily be converted into monomers require low temperature
(e.g., −40 ◦C) polymerization and are not suited for practical use. Moreover, chemically
recyclable polymers suffer poor performance and are not extensively used as many vir-
gin polymers. The recyclable liquid crystalline polymer composite was developed by
Kort et al. [135] that can be recycled several times without a decrease in the mechanical
properties by maintaining the molecular weight of the polymer. Although, the polymer
design and modification are not used extensively because of the poor performance as
compared to virgin plastic.

3. Applications of Plastic Waste in Different Sectors
3.1. Application of Plastic Waste in Construction

Currently, the application of discarded plastic in construction is considered one of
the emerging concepts for managing large amounts of plastic waste and reducing environ-
mental risks. The use of plastic waste is becoming one of the most stimulating processes
in construction and has been extensively investigated in the last few years [136,137]. The
application of discarded plastic in civil construction reduces the intake of natural aggre-
gates. Many scientists have worked on the possibility of using various types of plastic
waste for construction activities [138]. Much research has been conducted on multiple
applications, such as masonry [139,140], pavement [141], and aggregate replacement in
concrete [142,143]. Several investigations have previously been performed to evaluate the
characteristics of discarded plastic as a fine and coarse aggregate.

Most plastic waste from previous research was refined into small particles to obtain a
suitable size [144]. Then small plastic particles were added to various building activities
including bricks, mortar, pavement, concrete, and others. Coppola et al. [145] showed that
10% and 25% of mortar comprising plastic aggregate could achieve tensile strengths of
35.12 and 22.86 MPa, respectively, which passed the American Concrete Institute’s build-
ings standards (17.25 MPa). It is eminent that several patents have been approved for the
use of discarded plastic as a composite material. Despite the proliferation of research, the
making and use of discarded plastic as a manufacturing material is limited. The discarded
plastic treatment industry has not yet developed, and most plastic waste products are
used on a small-scale [146]. Figure 5 shows the schematic of plastic waste applications in
construction activities.

Since construction materials are made from plastic waste, various environmental prob-
lems significantly impact the successful implementation. According to Zhang et al. [147],
plastic trash can release small pollutants, negatively affecting the public and industry.
Research studies on plastic waste applications in different construction activities are given
in Table 2.
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Table 2. Plastic waste applications in different construction activities.

Types of
Composites

Types of
Replacement

Types of
Plastic

Percentage of
Replacement (%) Reference

Concrete

Fine E-plastic 0, 5, 10, 15, 20 [148]
Fine Various 0, 15, 20, 30, 40, 50 [142]
– PET 0, 1, 3, 5, 7, 10 [149]
Fine HDPE 0, 10, 20 [150]
Coarse – 0, 15, 30 [138]
Coarse PVC 0, 25, 50, 75, 100 [151]
Fine Styrofoam 0, 30, 40, 50 [152]

Fine Various 0, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55 [153]

Coarse MPW 0, 0.5, 1, 1.5, 2 [154]
Fine PET 0, 2.5, 5, 7.5 [155]
Fine PET 0, 5, 10, 15, 20 [156]
Coarse HDPE 0, 5, 10, 15, 20 [157]
Fine and Coarse Various 0, 5, 10, 15, 20 [158]
Fine PP 0–10 [159]
Coarse PS 0, 20, 40, 60, 80, 100 [160]
Fine and Coarse E-plastic 0, 5, 10, 15, 20, 25 [161]
Coarse E-plastic 0, 10, 20, 30 [162]
Coarse PS 0, 45, 67, 73, 82 [163]
Fine PET 0, 1, 2, 3 [164]
Coarse PET 0, 5, 10, 20 [165]
Fine E-plastic 0, 2, 4, 6, 8, 10 [166]
Coarse – 100 [167]
Coarse PS 0, 10, 20, 30, 40 [168]
Coarse PET 0, 5, 10, 15 [169]
Coarse HDPE 0, 10, 20, 30 [170]
Fine - 0, 5, 10, 15 [171]
Fine EPS 0, 15, 20, 25 [172]
Coarse HDPE 0, 25, 50 [173]
Coarse E-Plastic 0, 5, 10, 15, 18, 20 [143]
Fine PS 0, 25, 50, 70, 100 [174]
Fine PET 0, 10, 20, 30, 40, 50 [175]
Fine PVC & PP 0, 15, 30, 45, 60 [176]
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Table 2. Cont.

Types of
Composites

Types of
Replacement

Types of
Plastic

Percentage of
Replacement (%) Reference

Brick

– Polyester 0, 10, 15, 20, 30 [140]
Fine PET 8 [177]
Fine and Coarse Various 0, 50, 100 [178]
Coarse LDPE 0, 5, 10, 15, 20 [179]
Fine LDPE 0, 20, 25, 30, 50 [180]
Coarse PET 0,1,3, 7 [139]
Fine PET – [181]
Fine EPS 0, 20, 30, 40, 50 [182]
Fine PP 0, 5, 10, 20, 100 [183]
Fine PET 0, 1, 1.5, 2, 2.5 [184]
Fine Various 10 [185]
Fine HDPE 3 [186]
Fine LDPE 0, 5,10, 15, 20 [187]
Fine E-plastic 0–10 [188]
– PET 0.5, 1, 1.5, 2 [189]
Fine HDPE&LDPE 0, 5, 10, 15 20, 25 [190]
Coarse PET 0, 5, 10, 15 [191]

Paver block

Coarse PET & PP 0, 10, 20, 30 [192]
Fine PVC 0, 10, 20, 30 [193]
Coarse HDPE 0, 2, 4, 6, 8, 10 [141]
Fine PET 0, 25, 30 [194]
Coarse HDPE 0, 2, 4, 6, 8, 10 [195]

Mortar

Fine LDPE 0, 10, 20, 30, 50 [196]
Fine Various 0, 10, 25, 50 [197]
Fine PP 0, 100, 150, 200 [198]
Coarse PP 0, 5, 7.5, 10, 12.5, 15 [199]
Fine PP & PE 0, 10, 25 [200]
Fine PP & PE 0, 10, 25 [145]

Fine PET &
Polyolefin 0, 10, 15, 20 [201]

Fine PET 0, 5, 10, 15 [202]
Fine PC 0, 3, 10, 20, 50 [203]
Fine E-plastic 0, 2.5, 5, 7.5, 10, 12.5 [144]

Fine LDPE 0, 5, 10, 20, 30,
40, 50, 60 [204]

Fine PET 0, 2.5, 5, 10, 15, 20 [205]

Fine PET, POM,
ABS, PC 0, 5, 15, 20 [206]

3.2. Application of Plastic Waste as an Electrode Material

Microbial fuel cell (MFC) is an emerging technique used for sustainably obtaining
bioelectricity from the treatment of organic waste [207,208]. This method uses microor-
ganisms and organic debris as raw materials and biocatalysts to generate bioelectricity.
In recent years, numerous researchers have worked on improving MFC performance. In
this regard, advanced conductive electrode materials have been introduced as anodes and
cathodes to reduce MFC construction and operation costs [209]. Table 3 compares the
bio-electrochemical system’s different electrode materials derived from plastic waste.
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Table 3. Comparison of different electrode materials derived from plastic waste for the bio-
electrochemical system.

Types of MFC Biocatalyst Anode Preparation
Methods Cathode Open Circuit

Potential (mV)
Power Density

(mW m−2) Reference

Single
Chamber E. coli PANI/Graphene@carbon

Cloth
In-situ electro
polymerization

Platinum@Carbon
Cloth 836 884 ± 96 [210]

Dual Chamber E. coli Fe-t-MOF/PANI@Stainless
steel mesh

Chemical
polymerization

Fe-t-
MOF/PANI@Stainless
steel mesh

670 680 [211]

Mediator Free
Dual Chamber

Shewanella
putrefacien PANI/CNT@Graphene felt Electropolymerization Carbon Cloth 450 257 [212]

Dual Chamber Synthetic
wastewater

PANI/Polypyrrole@Stainless
steel wool

Electrochemical
polymerization

Platinum@Carbon
Pape 595 2880 [213]

Mediator Free
Dual Chamber

S.
oneidensis PANI/TiO2@Graphene Chemical

polymerization PANI/TiO2@Graphene 880 1459 [214]

Dual Chamber Domestic
sludge NiO/PANI@Carbon Felt In-situ

polymerization Carbon felt 589.6 1078.8 [215]

Dual Chamber
Shewanella
putrefa-
ciens

PANI/Large mesoporous
carbon (LMC)@Carbon
Cloth

In situ chemical
polymerization Carbon Cloth 780 1280 [216]

Single
Chamber

Shewanella
putrefa-
ciens

(MnFe2O4)/Polyaniline
(PANI)@Carbon Cloth Hydrothermal (MnFe2O4)/Polyaniline

(PANI)@Carbon cloth 871 [217]

Single
Chamber

Simulated
wastewater PANI@stainless steel plates Electro

polymerization
Platinum@Carbon
Paper 730 100 [218]

The electrodes based on Fe-t-MOF and PANI composite materials in MFC applications
require more investigation. The high-efficiency MOF-based electrode catalytic performance
provides new insight into the field of MFC electrodes. The PANI-based composite material
improves the prepared electrode material conductivity and is cheaper than the platinum-
based electrode. The diagram of converting plastic waste into electrode materials is shown
in Figure 6.
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3.3. Application of Plastic Waste in the Formation of Carbonaceous Nanomaterials

The beneficial impacts on the ecological system have made the recycling of plastic
waste a captivating issue in the scientific world. Chaudhary et al. [219] highlighted the
sustainable approach of transforming plastic waste comprising bottles, used cups, and
polyethylene bags via simple heating to fluorescent carbon dots (C-dots). The obtained
C-dots displayed absorption peaks at around 260 nm with sizes of 5–30 nm. Recycling has
produced structural changes in plastic waste and affected the optical properties of C-dots.
The toxicity profiling of C-dots has been successfully tested by employing multi-assay bio-
compatible activities, i.e., antibacterial and antifungal activities. The potential prospective
of C-dots derived from plastic waste has been explored in analytical applications involving
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selective copper metal ion sensing in aqueous media. Chaudhary et al. [219] highlighted
the potential accomplishment in preserving the environmental fate and responding to the
budding social hitch of plastic waste. The conversion of plastic debris in forming different
types of carbonaceous nanomaterials is depicted in Figure 7.
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3.4. Application of Plastic Waste in Fuel Production

Single-use plastic bags, disposable food containers, food wrap films, and their main
components of polyethylene, polypropylene, and poly(vinyl chloride) can be photocat-
alytically transformed into valuable fuels without using sacrificial agents. Jiao et al. [221]
described that plastic wastes could be converted into C2 fuels over a photocatalyst under
simulated natural environment conditions. Plastic waste was degraded into CO2 by a
photooxidative C–C bond cleavage; then the produced CO2 was reduced into valuable C2
fuels by a photoinduced C–C bond coupling. Szarka et al. [222,223] noted that PVC could be
converted into oily products by a simple (and relatively low temperature) thermo-oxidative
process. Figure 8 shows the schematic diagram of converting plastic waste into C2 fuel
production via the photocatalytic process. Liu et al. [224] reported a direct method to selec-
tively convert polyolefins to branched, liquid fuels, including diesel, jet, and gasoline-range
hydrocarbons over nanomaterials in hydrogen. The process proceeds via tandem catalysis
with the initial activation of the polymer, then subsequent cracking. Transforming plastic
waste into fuel may help address the white pollution crisis and harvest highly valuable
multi-carbon fuels.

3.5. Application of Plastic Waste in Wastewater Treatment

Plastic waste materials can be used to synthesize membranes and carbon-based adsor-
bent materials for wastewater treatment and reclamation. Adamczak et al. [225] synthesized
an ultrafiltration membrane from polystyrene waste material. The synthesized membrane
was used to treat river surface water. The polystyrene waste ultrafiltration membrane
was tested with different concentrations of waste polymer to determine the membrane
with the most favorable properties. Kumari et al. [226] converted solid waste plastic into
activated carbon nanofibers through chemical activation and carbonization processes. The
synthesized activated carbon nanofibers treated the thymol blue dye in wastewater via
adsorption. These applications offered a great avenue for recycling plastic waste regardless
of modifications or technical works to fulfill the important objective of water and wastew-
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ater treatment [227,228]. Fabrication of activated carbon materials from plastic waste for
wastewater treatment is shown in Figure 9.
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3.6. Application of Plastic Waste in Textile Products

Figure 10 shows plastic waste conversion into valuable textile products [229]. Recently,
the Anta group had a breakthrough; overcoming many technical barriers, they developed
a proficient method for producing polyester fiber from plastic bottles. The waste plastic
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bottles of 1 L and 550 mL were recycled using single energy technology clothing and
resulted in a 30–50% reduction in overall processing costs compared to international brands.
In China, carpet making by using waste plastic is well developed. A Shandong-based
carpet manufacturing company has recycled around 2.6 billion waste plastic bottles to
make 6 million blankets. Recycling plastic bottles not only reduces pollution but also comes
with economic benefits. Another example is the red carpet used in China’s military parade
in 2019; it was spectacular, environmentally friendly, and prepared with 400,000 waste
plastic bottles. The better functional properties observed in textiles and carpets produced
by this technology are abrasion resistance, better elasticity, mildew, and insect resistance
compared to animal and plant fibers [230].
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Watson et al., 2020, reported that 50–75% of synthetic textiles collected in Europe
had been recycled or reused in other value-added textile products. Most non-reusable
synthetic materials have been landfilled or incinerated [231]. PET is the most common
fiber for sportswear, but acrylic, elastane, nylon, and propylene are also used. Fiber
blends and functional coatings are commonly used in textiles for specific applications,
such as footwear, which is comfortable, resistant to extreme weather, and fashionable. In
sportswear textiles, moisture regulation and temperature are important characteristics to
assure adequate thermal insulation while releasing body heat and sweat during exercise.
A textile in sportswear also requires stretch ability for free movement and coatings for
reduced wear and tear or injuries.

3.7. Application of Plastic Waste in Other High-Value-Added Products

Biological valorization can be used to recycle plastic waste and develop effective
plastic waste recycling strategies. Kim et al. [232] evaluated the feasibility of the valoriza-
tion of plastic waste for its recycling. For biological plastic waste valorization, plastic
debris was depolymerized by chemical hydrolysis, and terephthalic acid and ethylene
glycol monomers were converted to a variety of higher-value chemicals using various
metabolically engineered whole-cell microbial catalysts. By introducing a terephthalic acid
degradation pathway into microbes, terephthalic acid was converted into high-value-added
aromatic or aromatic derived chemicals, namely, protocatechuic acid, gallic acid, pyrogallol,
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catechol, muconic acid, and vanillic acid, to be used for manufacturing pharmaceuticals,
cosmetics, sanitizers, animal feeds, and bioplastic monomers, as shown in Figure 11.
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4. Prospects

• Human activities pose ecological consequences and the increasing demand for re-
sources and energy has resulted in a significant perspective on plastic waste manage-
ment. The government and other related stakeholders should attain proper sustainable
waste management strategies to maintain environmental sustainability.

• From the perspective of plastic waste recycling, most current studies focus on PET.
Research should be expanded to other types of plastic waste (such as PP, PS, PVC, etc.)
to minimize the burden on the environment.

• The government and responsible agencies should set regulations that will promote
the further use of recycled plastic waste for construction purposes.

• Current plastic waste technologies for the conversion of plastic waste into textile
products are not mature. Further research may be carried out to overcome the technical
issues associated with this technology.

• Awareness sessions may be conducted in educational institutions and public places
for the importance of plastic waste management and environmental sustainability.

• Innovation is an integrated approach used to achieve meaningful improvement and
highlight the issues and challenges of fossil-based plastics.

5. Conclusions

Over the years, humans have massively deteriorated Earth’s natural ecosystems, i.e.,
due to the high rate of synthetic plastic production/consumption, which is being discarded
in the open environment without proper handling. A landfill is currently one of the
main methods used for plastic waste management; however, its real-world application is
extremely inefficient and inadequate. Recycling is another important method for handling
plastic waste. The most effective plastic treatment method is to convert plastic waste into
high-value-added components, such as tiles, paver blocks, concrete, sanitizers, perfumes,
graphene, electrode materials, carbon nanotubes, etc. It has been determined that plastic
is an unavoidable part of our lives, and its demand is increasing. Due to poor waste
management practices, the current usage of plastic is unsustainable. Society faces a serious
threat of plastic waste pollution that is being underestimated. We must decrease the amount
of plastic waste dispersed on roads and rivers; construction materials established from
recycled plastic waste are more durable and cost-effective. Appropriate handling of plastic
waste provides a platform for creating wealth. Contact with toxic chemicals utilized during
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plastic production and improper waste control can pose serious problems to humans and
the environment. Therefore, governments, regulatory bodies, and health administrations
worldwide must take action, and consider the sustainable manufacturing, applications,
and disposal of plastic waste.
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Nomenclature

PET poly(ethylene terephthalate) CH4 methane
LCA life cycle assessment H2 hydrogen
HDPE high density polyethylene TiO2 titanium dioxide
PVC poly(vinyl chloride) MPa mega pascal
LDPE low density polyethylene MSW municipal solid waste
PP polypropylene PANI polyaniline
PS polystyrene MFC microbial fuel cell
FC fixed carbon MOF metal organic framework
HHV higher heating value PVDF poly(vinylidene fluoride)
LHV lower heating value PTFE poly(tetrafluoroethylene)
Cl chlorine LLDE linear low-density polyethylene
MJ/Kg millijoule per kilogram mV milli volt
H/C hydrogen/carbon CNT carbon nanotubes
CO2 carbon dioxide Mn manganese
Mt million tons Fe2O4 ferrous oxide
SDG sustainable development goals CO carbon monoxide
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